Institute of Theoretical Physics Nijenborgh 4 9747 AG Groningen

TENTAMEN GENERAL RELATIVITY

wednesday 25-6-1997, 14.00-17.00, room 11.22

Indicate at the first page clearly your name, address, date of birth, year of arrival and at every other page your name.

Question 1

The Robertson-Walker metric for k = 1 can be written in the form (we take c = 1)

$$ds^{2} = dt^{2} - R(t)^{2} \{ d\chi^{2} + \sin^{2}\chi (d\theta^{2} + \sin^{2}\theta d\phi^{2}) \}.$$
 (1)

For the energy-momentum tensor of a perfect fluid the Einstein equations lead to the following relations between the function R(t), the mass density $\rho(t)$ and the pressure p(t):

$$\frac{(\dot{R})^2 + 1}{R^2} = \frac{1}{3}\kappa\rho, \qquad (2)$$

$$\dot{\rho} + 3(p+\rho)\frac{\dot{R}}{R} = 0. \tag{3}$$

The dot indicates a differentiation with respect to t and $\kappa = 8\pi G$ (G is Newton's constant).

We consider the situation of a Friedmann universe with ultra-relativistic matter, i.e. $p = \frac{1}{3}\rho$.

- (1.1) Show that ρR^4 is constant.
- (1.2) Determine R as a function of t. Take as boundary condition that R=0 at t=0. Let ρ_0 and R_0 be the values of the functions ρ and R at the

time $t=t_0$. Show that this universe has a finite lifetime and determine this lifetime in terms of ρ_0 , R_0 and Newton's constant G.

(1.3) Determine the orbit of light rays with $\dot{\theta} = \dot{\phi} = 0$. Hint: the following integral is needed:

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x \,. \tag{4}$$

(1.4) A light ray is emitted at the origin of the univere (i.e. R=t=0) from a point with coordinate $\chi = 0$. What is the value of the coordinate χ of the light ray if the value of R has become again equal to zero? Has the light ray then travelled through the whole universe?

Question 2

The Schwarzschild metric (we take c = 1)

$$ds^{2} = \left(1 - \frac{2m}{r}\right)dt^{2} - \left(1 - \frac{2m}{r}\right)^{-1}dr^{2} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
 (5)

leads for constant r and θ to the following geodesic equations

$$(1 - \frac{2m}{r})\dot{t} = k, (6)$$

$$r^2\dot{\phi} = h, \tag{7}$$

$$r^{2}\dot{\phi} = h, \qquad (7)$$

$$\frac{m}{r^{2}}(\dot{t})^{2} - r(\dot{\phi})^{2} = 0, \qquad (8)$$

with k and h constant. The dot indicates differentation with respect to the parameter u of the geodesic.

- (2.1) A light-ray follows a geodesic around a black hole for constant $r = r_0$ and $\theta = \pi/2$. Determine the value of r_0 .
- (2.2) Determine the coordinate time T that the light ray needs to complete one circular orbit.
- (2.3) Determine the circumference of the circle with $r = r_0$.

- (2.4) An observer, in a rocket, finds himself at the point with constant coordinates $r = r_0$, $\phi = 0$, $\theta = \pi/2$. What is the time that evolves at the watch of this observer during one revolution of the light-ray? What is according to the observer the velocity of light?
- (2.5) Using his rocket the observer now follows the orbit of the light-ray, see question (2.1), with a constant angular velocity $\omega = d\phi/d\tau$, where τ is the eigentime of the observer. At the time $t = t_0$ the observer stops his rocket. Determine the acceleration in the r-direction that the observer then gets. Hint: Use that for the Schwarzschild metric

$$\Gamma_{tt}^{r} = \frac{m}{r^{2}} (1 - \frac{2m}{r}), \quad \Gamma_{t\phi}^{r} = 0, \quad \Gamma_{\phi\phi}^{r} = -r(1 - \frac{2m}{r}).$$
(9)

Question 3

The Maxwell equations in a four-dimensional curved space can be written in the form

$$\nabla_{\nu} F^{\mu\nu} = j^{\mu}, \qquad (10)$$

$$\nabla_{\lambda} F_{\mu\nu} + \nabla_{\nu} F_{\lambda\mu} + \nabla_{\mu} F_{\nu\lambda} = 0. \tag{11}$$

Here F is the anti-symmetric field-strenght tensor and j the current. The covariant derivatives are with respect to the metric connection.

(3.1) Show that equation (11) for $F_{\mu\nu}$ is equivalent to

$$\partial_{\lambda} F_{\mu\nu} + \partial_{\nu} F_{\lambda\mu} + \partial_{\mu} F_{\nu\lambda} = 0. \tag{12}$$

Hint: The covariant derivative of a contravariant vector V^{μ} and a covariant vector W_{μ} are given by

$$\nabla_{\nu}V^{\mu} = \partial_{\nu}V^{\mu} + \Gamma^{\mu}_{\lambda\nu}V^{\lambda},$$

$$\nabla_{\nu}W_{\mu} = \partial_{\nu}W_{\mu} - \Gamma^{\lambda}_{\mu\nu}W_{\lambda}.$$
(13)

(3.2) We write

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \,, \tag{14}$$

where A_{μ} is a covariant vector. Show that the $F_{\mu\nu}$ defined in this way is a covariant tensor by showing that

$$\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \nabla_{\mu}A_{\nu} - \nabla_{\nu}A_{\mu}. \tag{15}$$

Show that this $F_{\mu\nu}$ is a solution of equation (11).

(3.3) Show that equation (10) may alternatively be written as

$$\partial_{\nu}(\sqrt{-g}F^{\mu\nu}) = \sqrt{-g}j^{\mu}\,,\tag{16}$$

with $g = \det (g_{\mu\nu})$. Hint: the metric connection is given by

$$\Gamma^{\rho}_{\mu\nu} = \frac{1}{2} g^{\rho\sigma} \{ \partial_{\mu} g_{\nu\sigma} + \partial_{\nu} g_{\mu\sigma} - \partial_{\sigma} g_{\mu\nu} \}. \tag{17}$$

Furthermore, we have the identity

$$\partial_{\mu}g = gg^{\rho\sigma}\partial_{\mu}g_{\rho\sigma}. \tag{18}$$

(3.4) Show that equation (10) implies that

$$\nabla_{\mu} j^{\mu} = 0. \tag{19}$$